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Abstract—Network anomaly detection is a critical aspect of
network management for instance for QoS, security, etc. The
continuous arising of new anomalies and attacks create a ctin-
uous challenge to cope with events that put the network intaity
at risk. Most network anomaly detection systems proposed so
far employ a supervised strategy to accomplish the task, usi
either signature-based detection methods or supervise@#rning
techniques. However, both approaches present major limitéons:
the former fails to detect and characterize unknown anomaks
(letting the network unprotected for long periods) , the later
requires training and labelled traffic, which is difficult an d expen-
sive to produce. Such limitations impose a serious bottleic& to
the previously presented problem. We introduce an unsupeliged
approach to detect and characterize network anomalies, witout
relying on signatures, statistical training, or labelled traffic, which
represents a significant step towards the autonomy of netw@s.
Unsupervised detection is accomplished by means of robusath-
clustering techniques, combining Sub-Space clustering i Ev-
idence Accumulation or Inter-Clustering Results Associabn, to
blindly identify anomalies in traffic flows. Correlating the results
of the unsupervised detection is also performed for improvig the
detection robustness. Characterization is achieved by blding
efficient filtering rules to describe a detected anomaly. The
detection and characterization performances of the unsupeised
approach are evaluated on real network traffic.

Index Terms—Unsupervised Anomaly Detection & Charac-
terization, Clustering, Clusters Isolation, Outliers Detection,
Filtering Rules, Anomaly Correlation.

I. INTRODUCTION

proaches are by far dominant in current research literatnde
commercial detection systems: signature-based deteatidn
supervised-learning-based detection. Both approactigsree
some kind of guidance to work, hence they are generally
referred to as supervised-detection approaches. Signatur
based detection systems are highly effective to detectethos
anomalies which are programmed to alert on. When a new
anomaly is discovered, generally after its occurrence, the
associated signature is coded by human experts, whichns the
used to detect a new occurrence of the same anomaly. Such a
detection approach is powerful and very easy to understand,
because the operator can directly relate the detected dypoma
to its specific signature. However, these systems cannendef
the network against new attacks, simply because they cannot
recognize what they do not know. Furthermore, building new
signatures is expensive, as it involves manual inspection b
human experts.

On the other hand, supervised-learning-based detectem us
labelled traffic data to train a baseline model for normal-
operation traffic, detecting anomalies as patterns that- dev
ate from this model. Such methods can detect new kinds
of anomalies and network attacks not seen before, because
they will naturally deviate from the baseline. Neverthe-
less, supervised-learning requires training, which isetim
consuming and depends on the availability of purely anomaly
free traffic data-sets. Labelling traffic as anomaly-fre@xs

Network anomaly detection has become a vital comppensive and hard to achieve in practice, since it is diffitult
nent of any network in today’s Internet. Ranging from normguarantee that no anomalies are hidden inside the collected
malicious unexpected events such as flash-crowds anddgjlutraffic. Additionally, it is not easy to maintain an accurated
to network attacks such as denials-of-service and netwarf-to-date model for anomaly-free traffic, particularly ewh
scans, network traffic anomalies can have serious detrahemew services and applications are constantly emerging.
effects on the performance and integrity of the network. TheWe think that modern anomaly detection systems should

principal challenge in automatically detecting and chiac

not rely on previously acquired knowledge and be able to

izing traffic anomalies is that these are moving targetss It autonomously detect and characterize traffic deviatingnfro

difficult to precisely and permanently define the set of gaesi

normal-operation one. Autonomous security is a strong re-

anomalies that may arise, especially in the case of netwayliirement in current networks. It is not acceptable to stily

attacks, because new attacks as well as new variants oflglrean a human hand made analysis of anomalies and attacks for
known attacks are continuously emerging. A general anomalgfining suited countermeasures. Such a hand made process
detection system should therefore be able to detect a wideslow, inefficient, costly and lets the network unprotdcte
range of anomalies with diverse structures, using the ledst several days in general. The current business process in
amount of previous knowledge and information, ideally noneetwork security is not fulfilling network requirements in
The problem of network anomaly detection has been eterms of fully efficient security. We therefore proposed a
tensively studied during the last decade. Two different apempletely unsupervised method to detect and characterize
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network anomalies, without relying on signatures, trajnior # teonn Reg/(l::utwm
labelled traffic of any kind. It adds to network (e.g. roujers #d:m]‘ﬁ/llullﬂmmgel - ?
or security components, thanks to unsupervised learnamges U | " !
analysis and decision making capabilities for limiting treed e
of a human operator. This aims at making decision very fast,
and configure efficiently and autonomously actual security
devices (IDS, firewall, ...) as soon as a new anomaly or attack I
is encountered. A first version of the unsupervised anomaly - Loy ST
detection method was initially proposed in [1]. It reliestbe 1 Conenin
use of sub-space clustering and Evidence Accumulatiors Thi “ ’
first proposed approach permits to detect both well-known as
well as completely unknown anomalies, and to automatically

produce easy-to-interpret signatures that charactelizent ) ) ,
In this paper, a new augmented version of this previousThe URCA tool [10] has an hybrid approach which relies on

proposal is presented. The global objectives are similav-N both signatures and supervised _Iearning. This_tool usespaa;i
ertheless, it aims at increasing robustness and correctfesthe result of any anomaly detection system. Itis able tostias

the decision making process by integrating new techniqu%'%oma”es by associating them with previously manuallyt bui

as Inter-Clustering Result Association (ICRA) and Anomal§ignatures through hierarchical clustering. However,hé t
Correlation. Figure 1 depicts the high-level structure af o 2homaly detection algorithm used detects an anomaly which

approach and its steps. It depicts both the techniquesmieese 'S different from every built-in signature, this system fsable

in previous papers (that will be nevertheless shortly prese to classify or character_|zt_a the conS|derec_1 unknown anamaly
in this one for making the paper self contained and undedstan ©Ur Proposal falls within the unsupervised anomaly detec-
able without referring to this previous publication) as has tion domain. Most work has been devoted to the Intrusion De-

the new ones recently integrated and which constitutes figgtion field, focused on the well known KDD'99 data-set. The
new contribution: ICRA and Anomaly Correlation. Figure Yast majority of the unsupervised detection schemes peapos
serves all along this paper, and will be further describetthén I Fhe literature are based on clustering and outliers tietgc

following sections. being [11]-[13] some relevant examples. In [11], authoms us

The remainder of the paper is organized as follows. Secti@r’rsmgIe'"”k""g,e hierarchical clustering method to clusieta
Il presents a very brief state of the art in the supervisd®m the KDD'99 data-set, based on the standard Euclidean

and unsupervised anomaly detection fields, additionally d@Stance for inter-pattern similarity. Clusters are cdesed as
scribing our main contributions. Section Il presents an ifi0rmal-operation activity, and patterns lying outside as@r

depth description of the clustering techniques and detectid® flagged as anomalies. Based on the same ideas, [12]seport
algorithms that we use. Section IV presents the anomaly c8RProved results in the same data-set, using three differen
relation technique that improves the anomaly extracticasph Cclustering algorithms: Fixed-Width clustering, an opts
Section V presents the automatic anomaly characterizati§#fSion ofk-NN, and one class SVM. Finally, [13] presents a
algorithm, which builds easy-to-interpret signatures foe COombined density-grid-based clustering algorithm to iover

detected anomalies. Section VI evaluates the computatioR@MPutational complexity, obtaining similar detectiosuks.

time of the unsupervised detection approach, considering
the parallelization of the clustering algorithms. Sectidh
presents a simple validation of our proposals, discovesimij  The algorithm runs in three consecutive stages. Firstly,
characterizing several anomalies in real network traffinfr multi-resolution flow aggregation is applied on the traffic i
the MAWI trace repository [2]. Finally, section VIII condes order to build several simple metrics such as number of bytes
this paper. packets or flows. Any time series based change detection
algorithm is then applied to the previously built traffic mies
in order to detect a change. This first step is depicted on the
The problem of network anomaly detection has been extarpper part of figure 1. The unsupervised detection algorithm
sively studied during the last decade. Traditional apgneac is depicted on the lower part of figure 1 and begins in the
analyze statistical variations of traffic volume metricsg(e second stage, using as input the set of flows captured in
number of bytes, packets, or flows) and/or other specifice time slot flagged as anomalous. Sub-Space Clustering
traffic features (e.g. distribution of IP addresses andsport(SSC) [14] and multiple Evidence Accumulation (EA) [15]
using either single-link measurements or network-wideadatre used to blindly extract the suspicious traffic flows that
A non-exhaustive list of methods includes the use of signabmpose the anomaly. We however show in this paper that EA
processing techniques (e.g., ARIMA, wavelets) on singlk-l actually lacks robustness. We hence propose a new technique
traffic measurements [3], [4], PCA [5], [6] and Kalman filterdgo combine the SSC results called Inter-Clustering Results
[7] for network-wide anomaly detection, and Sketches aapli Association (ICRA). In order to provide further improveni&n
to IP-flows [8], [9]. in terms of results robustness, we introduce a new method to
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Fig. 1. High-level description of our approach.
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correlate anomalies detected in several feature spacekelntype, distributed nature, aggregation type and netmasH, use
third stage of the algorithm, the evidence of traffic stroetuand impact on traffic features. On one hand, a SYN DDoS
is further used to produce filtering rules that characterizehich targets one machine from a high number of hosts
the detected anomaly, which are ultimately combined intolacated in several /24 addresses will constitute a clubfienvs
new anomaly signature. This signature provides a simple aaiet aggregated ify. In fact, each of these /24 addresses will
easy-to-interpret description of the problem, easing ngtw have traffic attributes values different from the ones ofnmalr
operator tasks. traffic: a high number of packet, a single destination andyman
Our anomaly detection works on single-link packet-levedYN packets. It is the whole set of these flows that will create
traffic captured in consecutive time-slots of fixed lendth. a cluster. On the other hand, if flows are aggregated,ithe
The first analysis stage consists in change detection. @éily destination address will be an outlier characterizgd b
each time-slot, traffic is aggregated dndifferent flow levels many sources and a high proportion of SYN packets.
l;. These include (from finer to coarser-grained resolution): Our particular goal is to identify and to isolate the diffetre
source IPq!;: IPsrc), destination IPqi-: TPdst), source Net- flows that compose the anomaly flagged in the first stage, both
work Prefixeqls 45: IPsrc/24, /16, /8), destination Network in a robust way. Unfortunately, even if hundreds of clustgri
Prefixes(ls,7 s: IPdst/24, /16, /8), andtraffic per Time Slot algorithms exist [18], it is very difficult to find a single otteat
(lg: tpTS). Time seriesZt“ are built for basic traffic metrics can handle all types of cluster shapes and sizes, or evetledeci
such as number of bytes, packets, and IP flows per timdich algorithm would be the best for our particular problem
slot, using the9 flow resolutions;. ¢. Any generic anomaly- Different clustering algorithms produce different péotits
detection algorithn¥(.) based on time-series analysis [3], [4]of data, and even the same clustering algorithm provides
[71, [8], [16] is then used oth“ to identify an anomalous slot. different results when using different initializations déor
In this case, we usabsolute deltoid§16] based on volume different algorithm parameters. This is in fact one of thgana
metrics time series#packets, #bytes and#syn). Time slot drawbacks in current cluster analysis techniques: the t¢dck
t; is flagged as anomalous W(Ztl;;) triggers an alarm for robustness.
any of thel; flow aggregation levels. Tracking anomalies at To avoid such a limitation, we have developed a divide and
multiple aggregation levels provides additional religpito conquer clustering approach, using the notions of cluggeri
the anomaly detector, and permits to detect both singleceeurensemble [19] and multiple clusterings combination. A ®us
destination and distributed attacks of very differentmsiées. ing ensembld® consists of a set oV partitions P,, produced
The unsupervised anomaly detection stage takes as inpufailthe same data withh = 1,.., N. Each of these partitions
the flows in the time slot flagged as anomalous, aggregagmdvides a different and independent evidence of data-struc
according to one of the different levels used in the firstestagure, which can be combined to construct a global clustering
An anomaly will generally be detected in different aggréwat result for the whole feature space. There are different viays
levels, and there are many ways to select a particular aggregroduce a clustering ensemble. We use Sub-Space Clustering
tion to use in the unsupervised stage; for the sake of sityplic (SSC) [14] to produce multiple data partitions, applying th
we shall skip this issue, and use any of the aggregationdeveame clustering algorithm t& different sub-space¥,, ¢ X
in which the anomaly was detected. Without loss of gengralibf the original space.
letY = {y1,..,yr} be the set of" flows in the flagged time . .
slot, referred to apatternsin more general terms. Each flow- Clustering Ensemble and Sub-Space Clustering
yr € Y is described by a set of traffic attributes ofeatures Each of thelV sub-space#J,, C X is obtained by selecting
In this paper, we use a list traffic attributes widely used iR features from the complete set dfattributes. The number
literature. The list includest = 9 traffic features: number of of sub-spacesV hence is equal td:-combinations-obtained-
source/destination IP addresses and ports, ratio of nuofbefrom-A. To set the sub-space dimensid) we take a very
sources to number of destinations, packet rate, ratio dfgiac useful property of monotonicity in clustering sets, known a
to number of destinations, and fraction of ICMP and SYthe downward closure property: “if a collection of pointsais
packets. According to our previous work on signature-basellister in ad-dimensional space, then it is also part of a cluster
anomaly characterization [17], such simple traffic desorip in any (d — 1) projections of this space” [20]. This directly
permit characterization of general traffic anomalies inyegas implies that, if there exists any evidence of densityXn it
interpret terms. The list is therefore by no means exhagistiwill certainly be present in its lowest-dimensional sulasgs.
and more features can be easily plugged-in to improve esult/sing small values foR provides several advantages: firstly,
Letx; = (z(1),..,z7(A)) € R* be the corresponding vectordoing clustering in low-dimensional spaces is more efficien
of traffic features describing flows, andX = (x;;..;xr) the and faster than clustering in bigger dimensions. Secondly,
complete matrix of features, referred to as fhature space density-based clustering algorithms provide better tesul
The unsupervised detection algorithm is based on clusterilow-dimensional spaces [20], because high-dimensiorzalesp
techniques applied t&X. The objective of clustering is to are usually sparse, making it difficult to distinguish bedwe
partition a set of unlabelled patterns into homogeneousggo high and low density regions. We shall therefore uge- 2
of similar characteristics, based on some measure of sitgila in our SSC algorithm, which gived’ = C4 = A(A —1)/2
Table | explains the characteristics of each anomaly ingeyn partitions.



TABLE |
FEATURE USED FOR THE DETECTION OM0S, DDOS, NETWORK/PORT SCANS AND SPREADING WORMS ANOMALIES OF DISTRIBUTED NATURE 1-TO-N OR N-TO-1 INVOLVE
SEVERAL /24 (SOURCE OR DESTINATION$ ADDRESSES CONTAINED IN A SINGLE/16 ADDRESS

Anomaly Distributed nature| Aggregation type| Clustering result] Impact on traffic features
1-to-1 IPsrc/x* Qutlier nSrcs = nDsts = 1, nPkts/sec > A1, avgPktsSize < Ag,
DoS (ICMPV SYN) TPdst/* Outlier (ICMP /nPkts > A3 VnSYN/nPkts > Aq).
TPsrc/24 (I3) Cluster nDsts = 1, nSrcs > aq, nPkts/sec > ag, avgPktsSize < ag,
t%Dsf/ce(:;M@;\é/zSI N) N-to-1 TPsre/16 (1) Outlier (ICMP /nPkts > a4 V nSYN/nPkts > as).
TPdst /* Outlier
o IPsrc/x* QOutlier nSrcs = nDsts = 1, nDstPorts > 1, avgPktsSize < (2,
Port scan 1to-1 TPdst/+ Outlier nSYN/nPkts > S
IPsrc/* Outlier

Network scan to nSrcs = 1, nDsts > §1, nDstPorts > d2, avgPktsSize < 43,

1-to-1 TPdst /24 (Is) Cluster .
several @IP/24 TPdst /16 (I7) Outlier nSYN/nPkts > d4.
Spreading worms to 1-t0-N IP(?;SY;{*([G) (C:)Ejtgtee"r nSrcs = 1, nDsts > 13, nDstPorts < 12, avgPktsSize < ns,
several @IP/24 TPdst/16 (07 Outlier nSYN/nPkts > n4.
B. Combining Multiple Partitions They will then likely be falsely considered as belonginghe t

Having produced the¥' partitions, we now explore different Same cluster. This possibility is to be considered veryossty

methods to combine these partitions in order to build a singtS it €an induce a huge error: different anomalies will be

partition where anomalous flows are easily distinguishaHF%erged t‘?gether and will then likely be vyrongly identifiecdfam
from normal-operation traffic: the classical Evidence AocH characterized. Another source of potential error whenguain

lation (EA) and the new Inter-Clustering Result Associatiotlustering algorithm ovef' values is the algorithm sensitivity
(ICRA) method to wrong parameters. Furthermore, the use of a threshold ove

1) Combining Multiple Partitions using Evidence Accutg and/or D can decrease the system performance in case of

mulation: A possible answer is provided in [15], where® WoNng value u_sed. .

authors introduced the idea of multiple-clusterings Emizke In order to avoid the preV|ou.sI.y exposed.sources °fe”°T' we

Accumulation (EA). By simple definition of what it is, anmtroduce a new way of comblmlng clustering result_s thalne

anomaly may consist of either outliers or small-size clsste from.sub—spaces. Inter-CIuster_lng Results Associatione T

depending on the aggregation level of flows¥h (cf table idea is to address the problem in terms of cluster of flows and
outlier of flow similarity instead of pattern (or flow) simiigy.

). EA then uses the cluster ensemfi*eto build two inter- ; A

pattern similarity measures between the flowsYn These Hencez we shift the similarity measure from the p_at_terntleot
similarity measures are stored in two elements: a sim}lari?IUSterIng results. The problem can then be split n tv_vo sub-
matrix S to detect small clusters and a vectorused to rank plrcc:)lli)fms.é:orrelalte CIUStFrS tErOUQE Ilnter—CC):Llf.ste'rAA.riﬂ_mm
outliers.S(p, ¢) represents the similarity between flowsnd (IOA ). and correlate outlier through Inter-Outlier Assaion

g. This value increases when the flowsand ¢ are in the (10A). h hi dt imilarity bet
same cluster many times and when the size of this cluster lén each case, a grapn 1S used to express simiarity between
her clusters or outliers. Each vertex is a cluster/eufliom

small. These two parameters allows the algorithm to targeéf b a7 q h ed he f h
small clustersD(o) represents the abnormality of the outligfY Sub-spacdJ, and each edge represents the fact that

o. This value increases when the outlier has been classif%\f?_conneaed _veruc_;es are similar. 'I_'he underly|_ng idea is
as such several times and when the separation betweens[“glghtforward: |dent|fy_clusters or outliers presendlifierent _
outlier and the normal traffic is important. As we are Onl\'j‘ub_-spaces that C_O”_ta'F‘ the same flows. To do so, we first
interested in finding the smallest-size clusters and thet mggfine a cluster similarity measure call%dpce%e)en two
dissimilar outliers, the detection consists in finding treavé clustersC, and Cy: CS(Cr, C) = maz(card(Cr),card(Cy)’

with the biggest similarity in5 and the biggest dissimilarity in

card being the function that associates a pattern set with its
D. Any clustering algorithm can then be applied on the matrf@rdinality, andC;, 0 Cs the intersection ot’; andC;. Each
S values to obtain a final partition a&X that isolates small-

edge in thecluster similarity graphbetween twoC, and Cy
size clusters of close similarity values. A variable detect meaniCS(Cr7CS) > 0.9, being this an empirically chosen
threshold over the values ifi is also able to detect small-sizevalue' lOA uses aroutlier S|m|Iar_|ty graphbuilt t_’y linking
cluster. Concerning dissimilar outliers, they can be ieala every outlier to every other outlier that contains the same
though. a threshold applied on the vaILjesDn pattern. Once these graphs are built, we need to find cluster
2) Combining Multiple Partitions using Inter-Clustering

sets where every cluster contains the same flows. In terms of
result AssociationHowever, by reasoning over the similaritiei\(elr(t'%ef’ we neet?] to fm? velrtex se;[]str\:vhere evehry vt?[::(ex IS
between patterns (here flows), EA introduces several paten Inked 1o every other vertex. In graph theory, such vertex se
errors. Let us consider two pattern ses and P, if the Is called aclique The clique search problem is a NP-hard
cardinality of these pattern sets is close and if they arequre problem. Most existing solutions use exhaustive searddens
in a similar ngmber of SUb'Spa_‘CPjS' Fhen EA will prOduce a Veryithe value0.9 guarantees that the vast majority of patterns are located in
close (potentially the same) similarity value for both flogiss both clusters with a small margin of error.




the vertex set which is too slow for our application. We theAn absolute rule for a certain featurg characterizing a
make the hypothesis that a vertex can only be part of a singlertain flow setY, has the formFR4 (Y ,a) = {Vy; €
clique. A greedy algorithm is then used to build each cliqu&, C Y : z,;(a) == A}. For example, in the case of an
Anomalous flow set are finally identified as the intersectibn €CMP flooding attack, the vast majority of the associated
all the flow sets present in the clusters or outliers withioheaflows use only ICMP packets, hence the absolute filtering
clique. rule {nICMP/nPkts == 1} makes sense. On the contrary,
relative filtering rules depend on the relative separatien b
tween anomalous and normal-operation flows. Basicallpdf t
anomalous flows are well separated from the normal cluster in

At the end of the ICLA/IOA step, many anomalies cam certain partitionP,, then the features of the corresponding
be found. However, it isa priori not possible to assesssub-spacdJ, are good candidates to define a relative filtering
an anomaly’s potential danger. A good way to evaluate itale. A relative rule has the forn’'Rz(Y,,a) = {Vy; €
potential impact is to find out whether it is visible in severaY, C Y : zy(a) < AV zy(a) > A}. We shall also define a
aggregation level$,. In fact, if an anomaly appears as sucleovering relationbetween filtering rules: we say that rufe
within several aggregation levels, it means that its flonmversrule f> < f2(Y) C f1(Y). If two or more rules overlap
are significantly different from the normal traffic in each ofi.e., they are associated to the same feature), the digorit
these aggregation levels, and thus, potentially dangeimuskeeps the one that covers the rest.
each of them. Therefore, we present a system that correlates order to construct a compact signature of the anomaly,
anomalies found in several aggregation leviglén order to we have to devise a procedure to select the most discriminant
filter anomalies present in one or few aggregation level afiittering rules. Absolute rules are important, because they
thus that we consider as having a limited impact. The systafefine inherent characteristics of the anomaly. As regards
will then also able to characterize the anomaly through ralatives rules, their relevance is directly tied to thereegof
signature for each aggregation level used, thus improvieg tseparation between anomalous and normal flows. In the case of
characterization reliability. outliers, we select th& features for which the Mahalanobis

In order to correlate anomalies from different aggregatiafistance to the normal-operation traffic is among the top-
levels, we define two unique characteristics of an anomtdy: iK' biggest distances. In the case of small-size clusters, we
source (source IP address set) and its destination (déstinarank the relatives rules according to the degree of separati
IP address set). We then define the similarity between two the normal anomaly using the well-known Fisher Score
IP address sets as the ratio between the sets’ intersec{iB8) which uses the variance in each cluster (normal and
cardinality and the maximum cardinality of each IP addressmiomalous). To finally construct the signature, the absolut
sets. If the similarities of the two IP address sets (sountk arules and the togs relative rules are combined into a single
destination) of two different anomalies are over a specifinclusive predicate, using the covering relation in case of
threshold, it guarantees that these anomalies have a vewvgrlapping rules.
similar source and destination IP address sets. In this wegk
chose to only correlate anomalies detected from aggregatio
levels source and destination, in order to avoid corrgdatin The last issue that we analyze is the Computational Time
anomalies located in same aggregation level type (g.gnd (CT) of the algorithm. The SSC-EA/ICRA-based algorithm
l4), that would be potentially contained in each other. Fipallperforms multiple clusterings itN(A) low-dimensional sub-
correlated anomalies are then built from each couple oflaimispacedU,, C X. This multiple computation imposes scalabil-
anomalies. ity issues for on-line detection of attacks in very-higlesg
networks. Two key features of the algorithm are exploited to
reduce scalability problems in number of featurésand the

At this stage, the algorithm has identified several coreglatnumber of aggregated flows to analyze. Firstly, clustering
anomalies containing a set of traffic flows M far out is performed in very-low-dimensional sub-spacts, € R?,
the rest of the traffic. The following task is to producevhich is faster than clustering in high-dimensional sp4t8%
filtering rules to correctly isolate and characterize eath &econdly, each sub-space can be clustered independently of
these anomalies. Even more, this signature could eventuale other sub-spaces, which is perfectly adapted for gdrall
be compared against well-known signatures to automaticalomputing architectures. Parallelization can be achiewed
classify the anomaly. different ways: using a single multi-processor and muttiec

In order to produce filtering rules, the algorithm select:achine, using network-processor cards and/or GPU (CGeaphi
those sub-spacdg,, where the separation between the considrrocessor Unit) capabilities, using a distributed group of
ered anomalous flows and the rest of the traffic is the biggestachines, or combining these techniques. We shall use the
We define two different classes of filtering rubhsoluterules term "slice” as a reference to a single computational entity
FRA(Y) andrelative rules FRr(Y). Absolute rules do not  Figure 2 depicts the CT of the SSC-EA/ICRA-based al-
depend on the separation between flows, and correspondysoithm, both (a) as a function of the number of features
the presence of dominant features in the considered flowsed to describe traffic flows and (b) as a function of the

IV. CORRELATING ANOMALIES FROM MULTIPLE
AGGREGATION

VI. COMPUTATIONAL TIME AND PARALLELIZATION

V. AUTOMATIC CHARACTERIZATION OF ANOMALIES
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seconds rounds the 2500 flows, which represents a value of
CT(Xsscwe) =~ 0.4 seconds. For the:w = 9 features that we
have used ¥ = 36), and even without doing parallelization,
the total CT isN x CT(Xgscwe) &~ 14.4 seconds.

—G—Clustering in the complete Feature Space
—=— Distributed Sub-Space Clustering, 40 slices
—— Distributed Sub-Space Clustering, 100 slices
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VIl. EXPERIMENTAL EVALUATION IN REAL TRAFFIC

@
3

o 5 710 I 25 30 Thoo 5000 9000 50000 100000 We evaluate the ablllty of our algorithm to detect and to
(a) Time vs. n features. (b) Time vs. n patterns. construct a signature for different anomalies located & th
Fig. 2. Computational Time as a function of n of features araf flows to same real traﬁlc trace from the pUb“C MAWI repository of
analyze. The number of aggregated flows in (afis= 10000. The number the WIDE project [2]. The WIDE operational network pro-
of features and slices in (b) id = 20 and S = 190 respectively. vides interconnection between different research irgtits
in Japan, as well as connections to different commercia$ ISP
number of flowsF to analyze. Figure 2.(a) compares th@nd universities in the U.S.. The traffic repository corssist
CT obtained when clustering the complete feature spéce of 15 minutes-long raw packet traces collected daily since
referred to as C{X), against the CT obtained with SSC,1999. The network traffic we shall work on consist of traffic
varying A from 2 to 29 features. We analyze a large numbd&om one of the trans-pacific links between Japan and the
of aggregated flowsF = 104, and use two different numberU.S., captured at sample point B. Reference [21] provides
of slices, S = 40 and S = 100. The analysis is done with fragmented documentation for the whole data set.
traffic from the WIDE network, combining different traces to ICLA phase results for destination IP address /24 aggrdgate
attain the desired number of flows. To estimate the CT dhta are displayed on figure 3.(a). Each vertex is a cluster
SSC for a given value oA and S, we proceed as follows: found in any of the generated sub-spaces. Each vertex number
first, we separately cluster each of the= A(A —1)/2 sub- is the index of a cluster among the whole cluster set withén th
spacesX;, and take the worst-case of the obtained clusterirdustering ensemblB. The normal traffic is represented by the
time as a representative measure of the CT in a single swiftex group with the highest number of vertices. Every othe
space, i.e., ClXsscwe) = max,, CT(U,,). Then, if N < S, group of points is a cliqgue and potentially contains an arlgma
we have enough slices to completely parallelize the SS&gure 3.(b) depicts the outlier similarity graph obtairfed
algorithm, and the total CT corresponds to the worst-casiestination IP address /24 aggregated data during the 10A
CT(Xsscwe)- On the contrary, ifN > S, some slices have to phase. Each vertex number is the index of the associated
cluster various sub-spaces, one after the other, and the toutlier among the whole outlier set within the clustering
CT becomeg N%S + 1) times the worst-case GXsscwe), ensembleP. The same graphs are built over the source IP
where % represents integer division. The first interestiregldress /24 aggregated data. Every edge means that the linke
observation from figure 2.(a) regards the increase of3XJT clusters or outliers are similar according to the criterdimed
when A increases, going from abo@t seconds forA = 2 in lll-B2.
to more than200 seconds forA = 29. As we said before, Every connected component which is also a clique is then
clustering in low-dimensional spaces is faster, which cedu extracted from the graph, considered as a potential anomaly
the overhead of multiple clusterings computation. The sdcoEach potential anomaly is assigned an index. This index
paramount observation is about parallelization: if thedthm has the following meaning: values between 0 and 99 means
is implemented in a parallel computing architecture, it ban anomalies from clusters found in source IP address aggegat
used to analyze large volumes of traffic using many traffgata, values between 100 and 199 means anomalies from
descriptors in an on-line basis; for example, if we @k outliers found in source IP address aggregated data, values
traffic features and a parallel architecture withD slices, we between 200 and 299 means cluster found in destination IP
can analyzel0000 aggregated flows in less than 20 secondsiddress aggregated data and values between 300 and 399
Figure 2.(b) compares GX) against CTXsscwe) for an  means anomalies from outliers found in destination IP aidre
increasing number of flows' to analyze, usingl = 20 traffic aggregated data. The choice of 100 anomalies for each type
features andS = N = 190 slices (i.e., a completely par-of anomaly source is made under the assumption that there is
allelized implementation of the SSC-EA-based algorithAg). less than 100 cliques in each graph.
before, we can appreciate the difference in CT when clugjeri Once anomalies are extracted from feature spaces by the
the complete feature space vs. using low-dimensional sulmsupervised detection, we apply anomaly correlation deor
spaces: the difference is more than one order of magnitutie find flows that are different from the normal ones in both
independently of the number of flows to analyze. Regardirggregation type: source IP address and destination IRRssldr
the volume of traffic that can be analyzed with tHig0% Figure 3.(c) depicts the anomalies similarities as a graph.
parallel configuration, the SSC-EA/ICRA-based algoritran ¢ Anomaly correlation then extracts three edges from thelgrap
analyze up to 50000 flows with a reasonable CT, aboutEhch edge represents the link between two similar anomalies
minutes in this experience. In the presented evaluatidres, here anomalies 101 and 300, 111 and 305, and finally 100 and
number of aggregated flows in a time slot off" = 20 205.



(a) Cluster similarity graph (b) Outlier similarity graph ¢)(Anomaly similarity graph.
Fig. 3. Cluster similarity graph and outlier similarity gfafor destination aggregated data. Anomalies are easlytifted through cliques.

TABLE Il
SIGNATURES OF ANOMALIES FOUND

Anomaly type Source traff!c Destlnatlon_ "?"ﬁ'c Source signature Destination signature
segment indice| segment indice
Few ICMP pkts 111 305 nSrcs = 1, nICMP /nPkts > \; nSrcs = 1, nICMP /nPkts > Ao
Few ICMP pkts 112 309 nSrcs = 1, nICMP /nPkts > o, nSrcs = 1, nICMP /nPkts > as
Network scan 100 205 nSrcs = 1, nDsts > 381,nSYN/nPkts > 32 nSrcs = 1, nDsts > B3, nSYN/nPkts > 4

: . VIIl. CONCLUSIONS

od [ T o e O S ) ) )

o7 : oz y; The completely unsupervised anomaly detection algorithm
b e g e we have presented has many interesting advantages w.r.t.
2o 5 2o previous proposals in the field. It uses exclusively unlizel

; P B 5 % Clustr 1 data to detect and characterize network anomalies, without

o L | X Anomalos fows N % nomalos fows assumin kind of si icul del ;

N b5 o g any kind of signature, particular model, or caceini
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data distribution. This allows to detect new previouslyaars
Fig. 4.  Filtering rules for characterization of the foundtvaerk scan in anoma_“es’ eve_n_ WlthOUt_ using St?‘tIStlc_al_leamlng or_laum
MAWI. analysis or decision making. Despite using ordinary chirsge
techniques, the algorithm avoids the lack of robustness of
Table 1l details each anomaly with its type, the segmegeneral clustering approaches by combining the notions of
indices extracted from ICLA and IOA and the two signatureSub-Space Clustering/Sub-Space Clustering, Inter-€iuss-
detected from both source and destination aggregated datgiation & Anomaly Correlation for Unsupervised Network
The terms “Few ICMP packets” actually means that these twdmomaly Detection and Anomaly Correlation. The character-
anomalies were containing just a few harmless ICMP packeigation approach permits the construction of easy-torome-
Both of these anomalies could have easily been discardedasnd-to-visualize results, providing insights and explimes
an impact estimation based on nPkts/second. about the detected anomalies to the network operator.
Figures 4.(a,b) depicts the results of the characterizatio We have evaluated the computational time of our algorithm.
phase for a network scan anomaly. Each sub-figure represdrgsults confirm that the use of the algorithm for on-line
a partition P, for which filtering rules were found. They unsupervised detection and characterization is possite a
involve the number of IP sources and destinations, and teasy to achieve for the volumes of traffic that we have
fraction of SYN packets. Combining them produces a signanalysed. Even more, they show that if run in a parallel archi
ture that can be expressed @srcs == 1) A (nDsts > )\;) tecture, the algorithm can reasonably scale-up to run ih-hig
A (nSYN/nPkts > )\2), where); and )\, are two thresholds speed networks, using more traffic descriptors to charaeter
obtained by separating normal and anomalous clusters fat hitwork attacks.
distance. This signature makes perfect sense: the netwark s We have verified the effectiveness of our proposal to detect
uses SYN packets from a single attacking host to a larged isolate distributed network anomalies on real traffic, i
number of victims. The main advantage of the unsupervisadcompletely blind fashion, without assuming any particula
approach relies on the fact that this new signature has begffic model, significant clustering parameters, or evars<l
produced without any previous information about the attadkrs structure beyond a basic definition of what an anomaly
or the baseline traffic. is. This provides a strong evidence of the accuracy of the



SSC-ICLA/IOA-Anomaly Correlation-based method to dete¢to] A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge
network anomalies. We think that this approach constitute a reuse framework for combining multiple partitions,J. Mach.

great step toward an autonomous network anomaly detection
that will allow networks to self-diagnose themselves angsth [20]

faster reactions and lower operational costs.
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